
Semant xi
INFORMATION TECHNOLOGIES

ESA/ESTEC Contract: 22259/09/NL/CBI

« ASN/1 Space Certifiable Compiler»

Deliverable D2

«ACN User Manual»

issued

2010-07-29

 Document Ref: ACN-UM-D2

Global Id: SMX-SPACE-ESA-C22259-ACN-UM-D2
 Version: 1.0

 Editing tool: Microsoft Word 2007

 Authors: George Mamais (gmamais@semantix.gr)

 Menelaos Perdikeas (mperdikeas@semantix.gr)

 Reviewers: Thanassis Tsiodras (ttsiodras@semantix.gr)

SEMANTIX Information Technologies S.A.
Konstantinou Tsaldari 62, 11476, Athens, GREECE

T: (+30) 210-6412065
F: (+30) 210-6412068
E-mail: info@semantix.gr

Web: www.semantix.gr

ACN User Manual

Semantix Information Technologies Page 2

TABLE OF CONTENTS

TABLE OF CONTENTS .. 2

ACRONYMS AND ABBREVIATIONS ... 3

1. WHAT IS ACN? ... 4

2. SHORT INTRODUCTION TO ACN .. 5

2.1. Auto generation of default ACN grammar .. 6

3. ACN ENCODING PROPERTIES ... 7

3.1. size property .. 7

3.1.1. Fixed form ... 7

3.1.2. Variable size with embedded length ... 7

3.1.3. Variable size with length specified in external field ... 8

3.1.4. Null terminated ... 8

3.2. encoding property .. 8

3.3. adjust property ... 9

3.4. align-to-next property .. 10

3.5. encode-what property .. 11

3.6. true-value and false-value properties ... 11

3.7. optionality property ... 11

3.8. present-when property ... 11

3.9. determinant-uper and determinant-tag properties ... 12

4. ENHANCED OPTIONS .. 14

4.1. Fields introduced in the ACN grammar ... 14

4.2. Parameterized encodings and deep field access ... 14

4.2.1. Length determinant is below current node .. 14

4.2.2. Length determinant is above current node .. 15

4.2.3. Length determinant is in completely different subtree .. 16

ACN User Manual

Semantix Information Technologies Page 3

ACRONYMS AND ABBREVIATIONS

ANSI American National Standards Institute
API Application Programming Interface

ASN.1 Abstract Syntax Notation 1
ASN1scc ASN.1 space certifiable compiler

AST Abstract Syntax Tree
BER Basic Encoding Rules
EAST Enhanced Ada SubseT
ECN Encoding Control Notation
ESA European Space Agency

ESTEC European Space Research and Technology Centre
PER Packed Encoding Rules
XML eXtensible Markup Language
XSD XML Schema Documentation

ACN User Manual

Semantix Information Technologies Page 4

1. WHAT IS ACN?

ASN.1 is a language for defining data structures (i.e. messages) in an abstract manner. An
ASN.1 specification is independent of the programming language (C/C++, Ada etc), the
hardware platform or even the encoding method used to serialize the defined messages.
The encoding mechanism, i.e. how bits and bytes are written over the wire, is determined
by the ASN.1 encoding. Although the standardized ASN.1 encodings may offer some
important benefits such as speed and compactness for PER or decoding robustness for BER,
there is no way for the designer to control the final encoding (i.e the format at the bit
level). This is a problem for situations where there is legacy binary protocol and we must
replace one of the communicating parties using ASN.1 encoders/decoders (i.e. when the
other, legacy system, must remain unchanged).

ACN is a proprietary ASN.1 encoding which addresses the above need: it allows protocol
designers to control the format of the encoded messages at the bit level.

The main features of ACN are:

• Easy to learn, with simple and clear syntax but also with enough power to cover
complex cases

• Encoding instructions are written in a separate file, so that the original ASN.1
grammar remains unpolluted

• Fields which do not carry semantic information but are used only during the
decoding process (e.g. length fields, choice determinants etc) may either appear in
the ASN.1 grammar or introduced only in the ACN specification.

The sections that follow showcase ACN through easy to follow code examples.

ACN User Manual

Semantix Information Technologies Page 5

2. SHORT INTRODUCTION TO ACN

Every ASN.1 type has a set of encoding properties that can be set in order to achieve the
desired binary encoding. These properties control certain aspects of the encoding process
such as: the size of type being encoded, how values are encoded (twos-complement vs
positive integer encoding, etc), the presence/absence of a certain field etc.

These properties are assigned to ASN.1 types using a pair of square brackets (“[“ and “] ”)

as seen in Listing 2. The encoding properties assignment is carried out in a separate file –
the ACN file, so that the original ASN.1 grammar remains “clean” from encoding
specifications.

Here is a simple ASN.1 grammar:

MYMOD DEFINITIONS AUTOMATIC TAGS::= BEGIN
 MyInt ::= INTEGER (-100 .. 100)
 MyInt2 ::= INTEGER (0 .. 1000)
 MySeq ::= SEQUENCE {
 a1 INTEGER (1..20),
 a2 INTEGER (-10 .. 20),
 a3 MyInt,
 a4 MyInt2
 }
END

Listing 1: Sample ASN.1 grammar

and here is an example ACN encoding for this grammar:

MYMOD DEFINITIONS ::= BEGIN

 --ACN allows constant definitions
 CONSTANT WORDSIZE ::= 32
 --We can make basic math with ACN constants
 CONSTANT LARGEST-INT ::= 2^^(WORDSIZE - 1)-1

 --MyInt will be encoded as twos complement integer .
 --Size will be 1 byte
 MyInt[size 8, encoding twos-complement]

 -- If no encoding properties are present, then
 -- encoding properties will be automatically popu lated
 -- so that the behavior matches the one of uPER i .e.
 -- size 10, encoding pos-int
 MyInt2 []

 -- encoding properties for types defined
 -- within constructed types (i.e. fields)
 MySeq [] {
 a1 [size auto, encoding pos-int],
 a2 [size 32, encoding twos-complement, endianness little],
 a3 [],
 a4 [size 11, encoding twos-complement] – allowed encoding range is -1024..1023
 }
END

Listing 2: Sample ACN grammar for the ACN grammar of Listing 1

By looking at the above code example, we see the following:

• For each ASN.1 module there is one ACN module with the same name.
• We can optionally define some integer constant values (WORDSIZE, LARGEST-INT

etc) which can be referenced by the rest of the ACN specification.

ACN User Manual

Semantix Information Technologies Page 6

• The ACN module contains the types (i.e. the type references) declared in the ASN.1
module followed by the encoding properties.

• The encoding properties may be absent. (The pair of open close brackets [] must
be present though). In this case, the encoding properties have values which are
calculated as follows:

o Referenced types inherit the properties of their base types
o For non referenced types (or referenced types whose base types have no

encoding properties), the encoding properties are automatically populated
with such values as to mimic the behavior of uPER.

• For types declared within constructed types such as SEQUENCE / CHOICE /

SEQUENCE OF, the encoding properties are declared after the component names

• The encoding properties are declared at type reference level. If a new type is
declared in the ASN.1 grammar based on an existing type reference, then the new
type inherits from the base type its encoding properties. The new type can override
the inherited properties with its own.

2.1. Auto generation of default ACN grammar

For a given ASN.1 grammar, the Semantix ASN.1 compiler can automatically generate a
default ACN grammar with such values in the encoding properties in order to mimic the
behavior of uPER. The user can then take the automatically generated ACN grammar and
modify some encoding properties according to his/her needs.

For example, for the ASN.1 grammar of Listing 1, the following ACN default grammar is
generated:

MYMOD DEFINITIONS ::= BEGIN

 MyInt[size 8, adjust -100, encoding pos-int]

 MyInt2[size 10, encoding pos-int]

 MySeq[optionality uper] {
 a1 [size 5, adjust 1, encoding pos-int],
 a2 [size 5, adjust -10, encoding pos-int],
 a3 [size 8, adjust -100, encoding pos-int],
 a4 [size 10, encoding pos-int]
 }

END

Listing 3: Automatically generated ACN grammar by the ASN.1 grammar of Listing 1

To automatically generate the ACN grammar, the Semantix ASN.1 compiler is invoked as
follows:

asn1 -ACND Asn1FileName.asn1

ACN User Manual

Semantix Information Technologies Page 7

3. ACN ENCODING PROPERTIES

3.1. size property

The size encoding property controls the size of the encoding type. It comes in four forms:

3.1.1. Fixed form
This form is used when the size of the encoded type is fixed and known at compile time

Syntax

 size intExpr – the units are provided in the table below

Example

 size 10

 size WORDSIZE/2 -- WORDSIZE is an ACN constant defined before

The following table lists the ASN.1 types where the fixed form can be applied as well as the
corresponding count unit.

Asn1 Type Count unit of intExpr

Integer Bits

Enumerated Bits

Bit String Bits

Octet String Octets

IA5String Characters

Numeric String Characters

Sequence/set Of Elements of sequence/set of

Table 1: ASN.1 types where the size property can be applied

3.1.2. Variable size with embedded length
This form is used when the size of the encoded type is variable. The Asn1/ACN compiler
encodes a length field before the actual data of the encoded type which holds the number
of the encoded elements that follow. For integer and enumerated types, the length field is
always one byte and the count unit is bytes (in order to be consistent with uPER – which
means even huge INTEGERs can be supported, up to 255x8bits). For octet strings, bit
strings, character strings and sequence/set of types, the length field size is calculated as in
uPER �log����	
���� and holds the number of octets, bits, character or sequence/set of

elements respectively.

Syntax

 size auto

Example

 size auto

ACN User Manual

Semantix Information Technologies Page 8

3.1.3. Variable size with length specified in external field
This form of size property is functionally equivalent with the previous one. The main
difference is that the length field is an external field provided in the ACN grammar

Syntax

 size field

Example

size length length is an integer field defined in the same scope with the
encoded type

size header.length header is a sequence type defined in the same scope with
the encoded type and which contains an integer type
component named length

This form of size property can be applied to bit string, octet string, character strings and
sequence/set of types.

3.1.4. Null terminated
This form can be applied only to integer or enumerated types and when their encoded
property is set to ASCII or BCD (see next section). The terminating character is null (0) for
ASCII encodings and the nibble ‘F’ for BCD encodings.

Syntax

 size null-terminated

Example

 size null-terminated

3.2. encoding property

The encoding property can be applied only to integer, enumerated and real types.

Syntax

 encoding encvalue

 where encvalue is one of pos-int, twos-complement, BCD, ASCII, IEEE754-1985-32
and IEEE754-1985-64

Example

 encoding pos-int

 encoding BCD

Encoding value Applicable ASN.1 types Remarks

pos-int Integer, enumerated The ASN.1 integer must have constraints
so that only positive values are allowed.

ACN User Manual

Semantix Information Technologies Page 9

Otherwise the compiler will report an
error.

twos-complement Integer, enumerated

ASCII Integer, enumerated The ASCII code of the sign symbol (‘+’ or
‘-‘) is encoded first (mandatory) followed
by the ASCII codes of the decimal digits of
the encoded value. For example, the value
456 will be encoded in the four ASCII
codes: 42 (i.e. ‘+’), 52, 53, 54.

BCD Integer, enumerated The ASN.1 integer must have constraints
so that only positive values are allowed.
Otherwise the compiler will report an
error.

IEEE754-1985-32 Real http://en.wikipedia.org/wiki/IEEE_754-
1985

IEEE754-1985-64 Real (same link as above)

Table 2: ASN.1 properties where the encoding property can be applied

3.3. endianness property

The endianness property can be applied only to fix size integers (and in particular when the
size is 16, 32 or 64 bits), enumerated and real types and determines the order of the
encoded bytes. For more information please refer to
http://en.wikipedia.org/wiki/Endianness

Syntax

 endianness endianness-value

 where endianness-value is big or little

Example

 endianness little

 endianness big (Default)

Encoding value Applicable ASN.1 types Remarks

Big Integer, enumerated,

Real

The 32 bit integer value 0xAABBCCDD will
be transmitted as follows:

0xAA, 0xBB, 0xCC, 0xDD

Little Integer, enumerated,

Real

The 32 bit integer value 0xAABBCCDD will
be transmitted as follows:

0xDD , 0xCC , 0xBB, 0xAA

Table 3: endianness property description

ACN User Manual

Semantix Information Technologies Page 10

3.4. adjust property

This property can be applied only to integer, enumerated types and to any type with size
constraints (sequence/set of, octet strings etc). In integer and enumerated types it affects
the integer value itself, while in types with size constraints it affects the encoding of the
length determinant. In the encoding process, the (integer) encoded value is the value of
the integer encoded type minus the value of the adjust property. In the decoding process
the reverse action is performed.

Encoding process:

 encodedValue := actualValue – adjust

Decoding Process:

 actualValue := decodedValue + adjust

Syntax

 adjust intExpr

Example

 adjust 10

This property has been introduced so that ACN can mimic the uPER behavior. For example,
assume the following ASN.1 type

MyInt ::= INTEGER(5..10)

In uPER, this type is encoded as positive integer using 3 bits. Moreover, the actual encoded
value is the value of MyInt minus 5. (Otherwise values 8, 9 and 10 would be impossible to
encode in three bits).

Hence, ACN properties in order to encode MyInt exactly as in uPER are:

MyInt [size 3, encoding pos-int, adjust 5]

3.5. align-to-next property

This property can be applied to any ASN.1 type, and allows the type to be encoded at the
beginning of the next byte or word or double word of the encoded bit stream.

Syntax

 align-to-next alignValue

Example

 align-to-next byte -- 8 bits

 align-to-next word – 16 bits

 align-to-next dword – 32 bits

ACN User Manual

Semantix Information Technologies Page 11

3.6. encode-what property

This property can be applied only to enumerated types and controls whether the enumerant
values will be encoded or their indexes.

Syntax

 encode-what value

Example

 encode-what values

 encode-what indexes

3.7. true-value and false-value properties

These two mutually exclusive properties can be applied only to Boolean types and
determine what value will be used to encode TRUE or FALSE values.

Syntax

 true-value bitStringValue

 false-value bitStringValue

Example

 true-value ‘111’B

 false-value ‘0’B

3.8. optionality property

This property can be applied only to sequence or set types and controls how the presence
or absence of optional components is encoded. If optionality is set to value ‘uper’ optional
components are handled exactly as in uPER (via a bitmask in the beginning). If optionality
is set to ‘manual’, the presence or absence of optional components is determined by the
value of external Boolean fields as explained in the next paragraph (via “present-when”).

Syntax

 optionality value

Example

 optionality uper

 optionality manual

3.9. present-when property

This property can be applied to any OPTIONAL ASN.1 type provided that the optionality
property of the parent sequence or set type is set to ‘manual’

Syntax

 Present-when booleanFld

ACN User Manual

Semantix Information Technologies Page 12

Example

MySeq ::= SEQUENCE {
 alpha INTEGER,
 beta BOOLEAN,
 gamma REAL OPTIONAL
}

Listing 4: Sample ASN.1 grammar

Seq[optionality manual] {
 alpha [],
 beta [],
 gamma [present-when beta, encoding IEEE754-1985-64]
}

Listing 5: ACN grammar for ASN.1 grammar of Listing 4

In the above example, gamma field is present only when beta is TRUE.

3.10. determinant-uper and determinant-tag properties

These two mutually exclusive properties can be applied only to choice types and determine
how the active alternative is encoded. In case of determinant-uper, as the name suggests,
the process is the same with uPER (a small positive integer is encoded at the beginning of
the choice with index of the active alternative). In case of determinant-tag, the active
alternative is determined by an external enumerated field which must have the same
names in its enumerants as the names of the choice alternatives.

Syntax

 determinant-uper

 determinant-tag enumFld

Example

MySeq ::= SEQUENCE {
 activeColor ENUMERATED {green, red, blue}
 beta BOOLEAN,
 colorData CHOICE {
 green REAL,
 red INTEGER,
 blue IA5String (SIZE(1..20))
 }

}

Listing 6: Sample ASN.1 grammar

MySeq [] {
 activeColor [],
 beta [],
 colorData [determinant-tag activeColor]
}

ACN User Manual

Semantix Information Technologies Page 13

Listing 7: ACN grammar for ASN.1 grammar of Listing 6

In the example above, the active alternative in colorData choice is determined by the
enumerated field activeColor.

ACN User Manual

Semantix Information Technologies Page 14

4. ENHANCED OPTIONS

4.1. Fields introduced in the ACN grammar

In some cases, the value for the encoding properties “size”, “present-when” and
“determinant-tag” may be another field. These fields do not carry semantic (i.e. application
specific) information but are used only in the decoding and encoding processes. Therefore
these fields may not exist in the ASN.1 grammar but introduced only in the ACN one. For
example, Listing 4 can be modified as follows:

MySeq ::= SEQUENCE {
 alpha INTEGER,
 gamma REAL OPTIONAL
}

Listing 8: The revised ASN.1 grammar of Listing 4. Field ‘beta’ is missing.

Seq[optionality manual] {
 alpha [],
 beta BOOLEAN [], -- exists only in the ACN file, not the ASN.1 one
 gamma [present-when beta, encoding IEEE754-1985-64]
}

Listing 9: Revised ACN grammar for the ASN.1 grammar of Listing 9. Field ‘beta’ along with
the type (BOOLEAN) is introduced.

Please notice that field ‘beta’ does not exist in the ASN.1 grammar but it was introduced
only in the ACN grammar.

4.2. Parameterized encodings and deep field access

There are cases where the length field of a sequence of (or choice determinant, or
optionality determinant etc) is not at the same level (i.e. components of a common parent)
as the sequence of itself. Actually there are three distinct cases:

a) The length determinant is one or more levels more deeply than the SEQUENCE OF

b) The SEQUENCE OF is one or more levels more deeply than the length determinant

c) The length determinant and the SEQUENCE OF are located in completely different

nodes which just have a common ancestor.

These three cases are explained in more detail in the following sub-paragraphs

4.2.1. Length determinant is below current node

This case is illustrated in Figure 1. Field secondaryHeader , which is optional, is present

when the secHeaderFlag in the primaryHeader is true.

ACN User Manual

Semantix Information Technologies Page 15

Figure 1. Deep field access – case a.

The corresponding ASN.1 / ACN grammar is:

--ASN.1 DEFINITION
 Packet ::= SEQUENCE {
 primaryHeader SEQUENCE {
 version INTEGER,
 seqNr INTEGER,
 secHeaderFlag BOOLEAN

},
secondaryHeader SEQUENCE {...} OPTIONAL

 }

-- Encodings definition
 Packet {
 primaryHeader[] {
 version [],
 seqNr [],
 secHeaderFlag []
 }
 secondaryHeader [present-when primaryHeader.secHeaderFlag]
 }

Listing 10: ACN grammar demonstrating access to fields at different levels

As shown in the example above, to access a “deep field” located in a child structure we
follow the C language notation i.e. fieldname.fieldname.fieldname etc. until we reach the
field we want.

4.2.2. Length determinant is above current node
This is the case where the array (sequence of_ is one or more levels more deeply than the

length determinant. For example, field “nrCalls ”, which is a top level field, contains the

number of calls in the array “calls ” located under “SourceData ”. Obviously, the

“nrCalls ” field is not accessible from the “calls ” field. To overcome this issue, we must

make the SourceData structure parameterized. This case is shown in Figure 2.

ACN User Manual

Semantix Information Technologies Page 16

Figure 2. Deep field access – case b.

The corresponding ASN.1 / ACN grammar is:

--ASN.1 DEFINITION

TAP2File ::= SEQUENCE {
 nrCalls INTEGER,
 data SourceData
}

SourceData ::= SEQUENCE {
 operatorID IA5String,
 calls SEQUENCE (SIZE(1..100))OF Call
}

--ACN DEFINITION

TAP2File {
 nrCalls [],
 data <nrCalls> [] -- nrCalls is passed as a parameter in SourceData
}

SourceData<INTEGER:nElements>
-- nElements is a parameter used in encoding/decoding
-- passed in from the levels above (in this case, T AP2File level)
{
 operatorID [],
 calls[size nElements] -- points to a parame ter not a field
}

Listing 11: ACN grammar demonstrating parameterized encodings

Please note the “<>” in the encoding definition of the SourceData which contains the list

with the encoding parameters (in this example, just one).

4.2.3. Length determinant is in completely different subtree
This case is the combination of the two previous cases. A typical case is depicted in Figure

3. In this example, field “nCalls ”, which is located under “header ” record, contains the

number of calls in the “calls ” array under “SourceData ”.

ACN User Manual

Semantix Information Technologies Page 17

Field nCalls (length determinant) and field calls (the SEQUENCE OF) are components of

two sibling structures (Header , SourceData) and have no access to each other.

Figure 3. Deep field access – case c.

To handle this case, we must apply the techniques of both previous cases. The
corresponding ASN.1 / ACN grammar would be:

--ASN.1 DEFINITION

TAP3File ::= SEQUENCE {
 header Header,
 data SourceData
}

Header ::= SEQUENCE {
 operatorID IA5String,
 nCalls INTEGER
}

SourceData ::= SEQUENCE {
 calls SEQUENCE (SIZE(1..100)) OF Call -- length fi eld is contained in the header.nCalls
}

--ACN DEFINITION

TAP3File {
 header [] {},
 data <header.nCalls> [] -– header.nCalls i s passed as a parameter
 -- in SourceData
}

Header[]{
 operatorID[],
 nCalls[]
 }

SourceData<INTEGER:nElements> -- parameters
{
 calls[size nElements] – “size” points to a parameter, not a field
}

Listing 12: ACN grammar demonstrating parameterized encodings and deep field access

